Deep Learning-Based Detection and Diagnosis of Alzheimer’s Disease from MRI Images: A Comparative Approach

المؤلفون

  • Abdelkader Alrabai Department of Physics, Wadi Alshatti University, Libya

DOI:

https://doi.org/10.36602/jsba.2025.20.60

الكلمات المفتاحية:

Alzheimer، CNN، Demented، MRI

الملخص

Alzheimer’s disease gradually erodes brain function, stringently disrupting memory and reasoning, expressly among older adults. Identifying the condition in its preliminary stages is decisive for timely support and potentially more operative care.This study investigated the application of deep learning models for the automated detection of AD from MRI images. Three Convolutional Neural Network (CNN) architectures are utilized specifically—VGG16, Xception, and ResNet50. The models are evaluated in both binary classification and multi-class classification. Standard evaluation metrics are used to assess model performance. For binary classification, ResNet50 had the highest accuracy (97.96%), followed by VGG16 (97.10%) and Xception (95.93%). In multi-class classification, ResNet50 additionally led (95.39%), slightly ahead of VGG16 (94.92%) and Xception (94.93%).These results underscore the strong potential of ResNet50, in particular, for clinical application, demonstrating reliable generalization to previously unseen MRI images. The study highlights the potential of deep learning models to enhance early detection of Alzheimer’s disease by supporting clinical diagnosis, improving accuracy, and enabling timely interventions. Automated MRI analysis may also reduce costs and expand access to quality screening, especially in resource-limited settings reinforcing the growing case for integrating AI into medical imaging workflows.

المراجع

[1] Zhang, X. X., Tian, Y., Wang, Z. T., Ma, Y. H., Tan, L., & Yu, J. T. (2021). The epidemiology of Alzheimer's disease modifiable risk factors and prevention. The journal of prevention of Alzheimer's disease, 8(3), 313-321.

[2] Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., ... & Jones, D. T. (2021). Alzheimer disease. Nature reviews Disease primers, 7(1), 33.

[3] Illakiya, T., & Karthik, R. (2023). Automatic detection of Alzheimer's disease using deep learning models and neuro-imaging: current trends and future perspectives. Neuroinformatics, 21(2), 339-364.

[4] Arafa, D. A., Moustafa, H. E. D., Ali-Eldin, A. M., & Ali, H. A. (2022). Early detection of Alzheimer’s disease based on the state-of-the-art deep learning approach: a comprehensive survey. Multimedia Tools and Applications, 81(17), 23735-23776.

[5] Yao, Z., Wang, H., Yan, W., Wang, Z., Zhang, W., Wang, Z., & Zhang, G. (2023). Artificial intelligence-based diagnosis of Alzheimer's disease with brain MRI images. European Journal of Radiology, 165, 110934.‏

[6] Vrahatis, A. G., Skolariki, K., Krokidis, M. G., Lazaros, K., Exarchos, T. P., &Vlamos, P. (2023). Revolutionizing the early detection of Alzheimer’s disease through non-invasive biomarkers: the role of artificial intelligence and deep learning. Sensors, 23(9), 4184.

[7] Sorour, S. E., Abd El-Mageed, A. A., Albarrak, K. M., Alnaim, A. K., Wafa, A. A., & El-Shafeiy, E. (2024). Classification of Alzheimer’s disease using MRI data based on Deep Learning Techniques. Journal of King Saud University-Computer and Information Sciences, 36(2), 101940.

[8] Tekin, R., &Onur, T. Ö. (2025). Binary Classification of Alzheimer's Disease Using Siamese Neural Network for Early Stage Diagnosis. Celal Bayar University Journal of Science, 21(2), 152-158.

[9] Mohammed, R. K., Jawad, M. Q., & Jasim, O. M. (2025). Alzheimer Detection Using Deep Learning Methods. Journal of Intelligent Systems & Internet of Things, 16(2).

[10] Prajapati, R., & Kwon, G. R. (2022). A binary classifier using fully connected neural network for Alzheimer's disease classification. Journal of Multimedia Information System, 9(1), 21-32.

[11] Mamun, M., Shawkat, S. B., Ahammed, M. S., Uddin, M. M., Mahmud, M. I., & Islam, A. M. (2022, October). Deep learning based model for alzheimer's disease detection using brain mri images. In 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0510-0516). IEEE.

[12] El-Latif, A. A. A., Chelloug, S. A., Alabdulhafith, M., & Hammad, M. (2023). Accurate detection of Alzheimer’s disease using lightweight deep learning model on MRI data. Diagnostics, 13(7), 1216.

[13] Pradhan, N., Sagar, S., & Singh, A. S. (2024). Analysis of MRI image data for Alzheimer disease detection using deep learning techniques. Multimedia Tools and Applications, 83(6), 17729-17752.

[14] Marwa, E. G., Moustafa, H. E. D., Khalifa, F., Khater, H., &AbdElhalim, E. (2023). An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alexandria Engineering Journal, 63, 211-221.

[15] Sharma, S., Guleria, K., Tiwari, S., & Kumar, S. (2022). A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans. Measurement: Sensors, 24, 100506.

[16] Fareed, M. M. S., Zikria, S., Ahmed, G., Mahmood, S., Aslam, M., Jillani, S. F., ... &Asad, M. (2022). ADD-Net: an effective deep learning model for early detection of Alzheimer disease in MRI scans. IEEE Access, 10, 96930-96951.

[17] Murugan, S., Venkatesan, C., Sumithra, M. G., Gao, X. Z., Elakkiya, B., Akila, M., & Manoharan, S. (2021). DEMNET: a deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. Ieee Access, 9, 90319-90329.

[18] Helaly, H. A., Badawy, M., &Haikal, A. Y. (2022). Deep learning approach for early detection of Alzheimer’s disease. Cognitive computation, 14(5), 1711-1727.‏

[19] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

.‏

[20] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258).

[21] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[22] Alzheimer MRI 4 classes dataset, https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset

[23] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.‏‏

منشور

2025-11-02

كيفية الاقتباس

Alrabai, A. (2025). Deep Learning-Based Detection and Diagnosis of Alzheimer’s Disease from MRI Images: A Comparative Approach. مجلة العلوم الاساسية و التطبيقية - كلية العلوم - جامعة مصراتة - ليبيا, (20), 67–73. https://doi.org/10.36602/jsba.2025.20.60