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Abstract: The discrete Putzer algorithm is examined in this work as an effective technique for resolving linear 

and nonlinear difference equations. The approach simplifies calculations and offers analytical answers by 

utilizing matrix theory and eigenvalue analysis, particularly for higher-order and non-homogeneous systems. Its 

efficacy is demonstrated by examples such as Fibonacci sequences and population dynamics. The Cayley-

Hamilton theorem is applied to increase the algorithm's usefulness and make it a potent tool for dynamic systems 

in both theoretical and practical settings. 
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Introduction:     Many research studies are conducted in fields like 

engineering, applied mathematics, and t

he sciences in the area of difference equations, the 

difference equations are important for simulating 

dynamic systems in general. They are frequently 

employed to show phenomena in signal processing, 

economics, population dynamics, and other 

disciplines that study discrete processes. The need to 

figure out effective methods is motivated by the fact 

that solving these equations analytically, particularly 

higher-order and non-homogeneous ones, frequently 

poses substantial computational hurdles. One 

effective method for overcoming these obstacles is the 

discrete Putzer algorithm. 

This approach streamlines the calculation of solutions 

to linear and nonlinear difference equations, building 

on the fundamental Cayley-Hamilton theorem and 

matrix theory. The discrete Putzer algorithm uses 

eigenvalue analysis to expedite the process in contrast 

to conventional techniques, especially for autonomous 

systems of differential equations.  

Because of this, it works very well in applications that 

need exact answers, such population modelling and 

sequence analysis, which includes Fibonacci 

sequences.  

Studies have demonstrated that the algorithm's 

accuracy and robustness are improved by spectral 

radius analysis and eigenvalue characteristics [1-7]. 

For [4] extended Putzer’s representation to compute 

analytic matrix functions using omega matrix 

calculus. 

It is a vital tool for both theoretical and practical 

applications due to its computational efficiency in 

handling higher-order systems. Through thorough 

examples, this study will explore the algorithm's 

efficacy for developing approaches to addressing 

dynamic systems. 

The Putzer algorithm 

Theorem 1: Putzer algorithm [6] 
The Putzer algorithm provides an efficient solution to 
the linear difference equation 𝑢(𝑡 + 1) = 𝐴𝑢(𝑡) with 

initial vector 𝑢0 is  

𝑢(𝑡) = ∑ 𝑐𝑖+1(𝑡)𝑀𝑖𝑢0 = 𝐴𝑡𝑢0

𝑛−1

𝑖=0

 

Where 𝑀𝑖 are given by 

 𝑀0 = 𝐼 ⟹ 𝑀𝑖 = (𝐴 − 𝜆𝐼)𝑀𝑖−1(1 ≤ 𝑖 ≤ 𝑛) 

and 𝑐𝑖(𝑡), (𝑖 = 1,2,⋯ , 𝑛) are uniquely determined by 

equation  

[
 
 
 
 
𝑐1(𝑡 + 1)

𝑐2(𝑡 + 1)
⋮
⋮

𝑐𝑛(𝑡 + 1)]
 
 
 
 

=

[
 
 
 
 
𝜆1 0 0 ⋯ 0
1 𝜆2 0 ⋯ 0
0 1 𝜆3 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 1 𝜆𝑛]

 
 
 
 

[
 
 
 
 
𝑐1(𝑡)

𝑐2(𝑡)
⋮
⋮

𝑐𝑛(𝑡)]
 
 
 
 

    

with 

 

[
 
 
 
 
𝑐1(𝑡)

𝑐2(𝑡)
⋮
⋮

𝑐𝑛(𝑡)]
 
 
 
 

 =

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

,   

Proof:- According to the Cayley-Hamilton theorem, 

if 𝐴 is an 𝑛 × 𝑛  matrix, then any power of 𝐴 (i.e., 𝐴𝑛) 

can be expressed as a linear combination of 

𝐼, 𝐴, 𝐴2, ⋯ , 𝐴𝑛−1.  

This means that all powers of 𝐴 can be written in 

terms of these powers. Let 𝜆1, 𝜆2 , ⋯ , 𝜆𝑛 be the 

eigenvalues of 𝐴, which may not be distinct, with 

each eigenvalue repeated according to its multiplicity.  
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𝑀0 = 𝐼,        (𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥),

𝑀𝑖 = (𝐴 − 𝜆𝑖𝐼)𝑀𝑖−1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛
}             (1) 

Since 𝑀0 = 𝐼 this recursion will eventually yield 

𝑀𝑛 = 0, which is consistent with the Cayley-

Hamilton theorem. If 𝜆1, 𝜆2 , ⋯ , 𝜆𝑛 are eigenvalues of 

𝐴 then the characteristic equation is  
(𝜆 − 𝜆1)(𝜆 − 𝜆2) ⋯ (𝜆 − 𝜆𝑛) = 0 

By Cayley-Hamiltion theorem   
(𝐴 − 𝜆1𝐼)(𝐴 − 𝜆2𝐼) ⋯ (𝐴 − 𝜆𝑛𝐼) = 0 

Now, definition (1) implies that each 𝐴𝑖 is a linear 

combination of 𝑀0 , 𝑀1 , ⋯ ,𝑀𝑖 for (𝑖 = 0,1,2,⋯ , 𝑛 −
1) 

𝐴𝑡 = ∑ 𝑐𝑖+1(𝑡)𝑀𝑖  𝑓𝑜𝑟 𝑡 ≥ 0

𝑛−1

𝑖=0

 

where 𝑐𝑖+1(𝑡) are to be determined.   

Now, we can write,  

𝐴𝑡+1 = 𝐴. 𝐴𝑡 

∑ 𝑐𝑖+1(𝑡)𝑀𝑖 = 𝐴 ∑ 𝑐𝑖+1(𝑡)𝑀𝑖

𝑛−1

𝑖=0

𝑛−1

𝑖=0

                (2) 

= ∑ 𝑐𝑖+1(𝑡)𝐴𝑀𝑖

𝑛−1

𝑖=0

 

By using (1), we get  

= ∑ 𝑐𝑖+1(𝑡)[𝑀𝑖+1 + 𝜆𝑖+1𝑀𝑖]          

𝑛−1

𝑖=0

 

= ∑ 𝑐𝑖+1(𝑡)𝑀𝑖 + ∑ 𝑐𝑖+1(𝑡)𝜆𝑖+1𝑀𝑖                       (3)

𝑛−1

𝑖=0

𝑛−1

𝑖=0

 

𝑀𝑛 = 0 = ∑ 𝑐𝑖+1(𝑡)𝑀𝑖+1

𝑛−1

𝑖=0

 

Replace 𝑖 by 𝑖 − 1 in first sum and use the fact that  

= ∑ 𝑐𝑖(𝑡)𝑀𝑖 + ∑ 𝑐𝑖+1(𝑡)𝜆𝑖+1𝑀𝑖                       

𝑛−1

𝑖=0

𝑛−1

𝑖=1

 

Equation (3) is satisfied if the 𝑐𝑖(𝑡),  
(𝑖 = 1,2,⋯𝑛) are chosen to satisfy the system: 

(Equating the coefficients of 𝑀𝑖
′𝑠, we get)  

[
 
 
 
 
𝑐1(𝑡 + 1)

𝑐2(𝑡 + 1)
⋮
⋮

𝑐𝑛(𝑡 + 1)]
 
 
 
 

=

[
 
 
 
 
𝜆1 0 0 ⋯ 0
1 𝜆2 0 ⋯ 0
0 1 𝜆3 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 1 𝜆𝑛]

 
 
 
 

[
 
 
 
 
𝑐1(𝑡)

𝑐2(𝑡)
⋮
⋮

𝑐𝑛(𝑡)]
 
 
 
 

 (4) 

Since   𝐴0 = 𝐼 = 𝑐1(0)𝐼 + ⋯+ 𝑐𝑛(0)𝑀𝑛−1 , we must 

have  

[
 
 
 
 
𝑐1(𝑡)

𝑐2(𝑡)
⋮
⋮

𝑐𝑛(𝑡)]
 
 
 
 

 =

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

                      (5) 

By theorem, the initial value problems (4) − (5) has 

a unique solution, hence the theorem.   

Example1: Putzer algorithm 

Solve   𝑢(𝑡 + 1) = 𝐴𝑢(𝑡), where 𝐴 = [
1 1

−1 1
] 

To find eigenvalues consider characters equation 

|𝐴 − 𝜆𝐼| = 0 ⟹ |[
1 1

−1 1
] − 𝜆 [

1 0
0 1

]| = 0 

⟹ (1 − 𝜆)2 + 1 ⟹ 1 − 2𝜆 + 𝜆2 + 1 = 0 

⟹ 𝜆2 − 2𝜆 + 2 = 0 ⟹ 𝜆1,2 = 1 ± 𝑖, 
are the eigenvalues of matrix. Now, we know that 

𝑀0 = 𝐼 

𝑀1 = 𝐴 − 𝜆1𝐼 = [
1 1

−1 1
] − (1 + 𝑖) [

1 0
0 1

]

= [
−𝑖 1
−1 −𝑖

] 

Also 𝑐1(𝑡) and 𝑐2(𝑡) satisfies the equations 

[
𝑐1(𝑡 + 1)
𝑐2(𝑡 + 1)

] = [
𝜆1 0
1 𝜆2

] [
𝑐1(𝑡)
𝑐2(𝑡)

]  and [
𝑐1(0)
𝑐2(0)

] =  [
1
0
] 

[
𝑐1(𝑡 + 1)
𝑐2(𝑡 + 1)

] = [
1 + 𝑖 0

1 1 − 𝑖
] [

𝑐1(𝑡)
𝑐2(𝑡)

] 

And                            𝑐1(0) = 1 , 𝑐2(0) = 0 

𝑐1(𝑡 + 1) = (1 + 𝑖)𝑐1(𝑡), 𝑐1(0) = 1 ⟶ (6) 

𝑐2(𝑡 + 1) = 𝑐1(𝑡) + (1 − 𝑖)𝑐2(𝑡),
𝑐2(0) = 0 ⟶ (7) 

Solving (6), we get 𝑐1(𝑡) = (1 + 𝑖)𝑡 

Then, (7) becomes 

 𝑐2(𝑡 + 1) = (1 − 𝑖)𝑐2(𝑡) +  (1 + 𝑖)𝑡 , 𝑐2(0) = 0 

𝑐2(𝑡 + 1) − (1 − 𝑖)𝑐2(𝑡) =  (1 + 𝑖)𝑡 , 𝑐2(0) = 0 

(𝐸 − (1 − 𝑖))𝑐2(𝑡) = (1 + 𝑖)𝑡  

Using annihilator method 
[𝐸 − (1 + 𝑖)][𝐸 − (1 − 𝑖)]𝑐2(𝑡) = 0 

∵ [𝐸 − (1 + 𝑖)](1 + 𝑖)𝑡 = 0 ⟹ (𝐸 − 𝜆)𝜆𝑡 = 0 

𝑐2(𝑡) = 𝐴(1 − 𝑖)𝑡 + 𝐵(1 + 𝑖)𝑡 

Substituting in equation to find value of, we get 

𝐵 =
1

2𝑖
= −

𝑖

2
 

This gives, 

𝑐2(𝑡) = 𝐴(1 − 𝑖)𝑡 + −
𝑖

2
(1 + 𝑖)𝑡 

But, 

𝑐2(0) = 0 ⟹ A =
𝑖

2
= −

𝑖

2
 

Finally, the solution is 

𝑢(𝑡) = (𝑐1(𝑡)𝐼 + 𝑐2(𝑡)𝑀1)𝑢0 

𝑢(𝑡) = (1 + 𝑖)𝑡 [
1 0
0 1

]

+
𝑖

2
[(1 − 𝑖)𝑡 − (1 + 𝑖)𝑡] [

−𝑖 1
−1 −𝑖

] 

which is the required solution. 

From (Putzer algorithm) 

𝐴𝑡 = (𝑐1(𝑡)𝐼 + 𝑐2(𝑡)𝑀1) = 2
1

2⁄ [
cos

𝜋

4
𝑡 sin

𝜋

4
𝑡 

− sin
𝜋

4
𝑡 cos

𝜋

4
𝑡
] 

The discrete Putzer algorithm 

Autonomous homogeneous linear systems of 

difference equation. Consider a first order linear 

discrete system of the form 

𝑥1(𝑛 + 1) = 𝑎11𝑥1(𝑛) + 𝑎12𝑥2(𝑛) + ⋯ + 𝑎1𝑘𝑥𝑘(𝑛)

𝑥2(𝑛 + 1) = 𝑎21𝑥1(𝑛) + 𝑎22𝑥2(𝑛) + ⋯ + 𝑎2𝑘𝑥𝑘(𝑛)
⋮

𝑥𝑘(𝑛 + 1) = 𝑎𝑘1𝑥1(𝑛) + 𝑎𝑘2𝑥2(𝑛) + ⋯+ 𝑎𝑘𝑘𝑥𝑘(𝑛)

 

We can write this in vector form as 

𝑋(𝑛 + 1) = 𝐴𝑋(𝑛) 
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where   𝑋(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛) ,⋯ , 𝑥𝑘(𝑛)  )𝑇  and  

𝐴 = (𝑎𝑖𝑗) is  a 𝑘 × 𝑘 matrix. 

Suppose that 𝑋(0) is known. Then 
𝑋(1) = 𝐴𝑋(0)

𝑋(2) = 𝐴𝑋(1) = 𝐴2𝑋(0)

𝑋(3) = 𝐴𝑋(2) = 𝐴3𝑋(0)

 

Continuing with this pattern, we see that 

𝑋(𝑛) = 𝐴𝑛𝑋(0) 

𝑥(𝑛 + 1) = (
𝑥1(𝑛 + 1)

⋮
𝑥𝑘(𝑛 + 1)

) = 𝐴𝑥(𝑛) , 𝑥(0) = (
𝑥1(0)

⋮
𝑥𝑘(0)

) 

An algorithm for calculating the matrix is  

provided by the following theorem  𝐴𝑛 

Theorem 2: The discrete Putzer Algorithm [3] 

Let  𝐴 any 𝑘 × 𝑘 matrix with Eigen values  

𝜆1, 𝜆2, ⋯ , 𝜆𝑘 . Then 

𝐴𝑛 = ∑ 𝑢𝐽(𝑛)𝑀(𝐽 − 1)

𝑘

𝐽=1

 

Where 

𝑢1(𝑛) = 𝜆1
𝑛 , 𝑢𝐽(𝑛) = ∑ 𝜆𝐽

𝑛−1−𝑖𝑢𝐽−1(𝑖)

𝑛=1

𝑖=0

 

For the proof see [3, 6] 

Example 2: Consider the system of difference 

equations 
𝑥1(𝑛 + 1) = 𝑥1(𝑛) − 𝑥2(𝑛)

𝑥2(𝑛 + 1) = 2𝑥2(𝑛)
 

with initial conditions 𝑥1(0) = 0 and 𝑥2(0) = 1 

If   𝑥(𝑛) = (𝑥1(𝑛) , 𝑥2(𝑛))
𝑇
  and 𝐴 = (

1 −1
0 2

), then 

we have 

𝑋(𝑛 + 1) = 𝐴𝑋(𝑛) , 𝑋(0) = (0,1)𝑇 

In order to determine the eigenvalues of 𝐴, we solve 

the equation 
|𝐴 − 𝜆𝐼| = (1 − 𝜆)(2 − 𝜆) = 0 

The eigenvalues are    𝜆1 = 1 , 𝜆2 = 2. Now from the 

Putzer algorithm 

𝐴𝑛 = ∑ 𝑢𝐽(𝑛)𝑀(𝐽 − 1) = 𝑢1(𝑛)𝑀(0) +2
𝐽=1

𝑢2(𝑛)𝑀(1)  , 

Where       𝑀(0) = 𝐼 = (
1 0
0 1

) 

𝑀(1) = 𝐴 − 𝜆1𝐼 = 𝐴 − 𝐼 = (
0 −1
0 1

) 

Now,     𝑢1(𝑛) = 𝜆1
𝑛 = 1𝑛 = 1 , 𝑢2(𝑛) =

∑ 𝜆2
𝑛−1−𝑖𝑢1(𝑖)

𝑛=1
𝑖=0  

= ∑ 2𝑛−1−𝑖 = 2𝑛−1 ∑ (
1

2
)

𝑖

= 2𝑛−1
1 − (

1
2
)

𝑛

1 −
1
2

𝑛−1

𝑖=0

𝑛−1

𝑖=0

= 2𝑛 − 1 

∴  𝐴𝑛 = 1(
1 0
0 1

) + (2𝑛 − 1) (
0 −1
0 1

)

= (
1 1 − 2𝑛

0 1 + 2𝑛 − 1
)

= (
1 1 − 2𝑛

0 2𝑛 ) 

Hence the analytical solution is 

𝑋(𝑛) = 𝐴𝑛𝑋(0) = (
1 1 − 2𝑛

0 2𝑛 ) (
0
1
) = (

1 − 2𝑛

2𝑛 ) 

∴  𝑥1(𝑛) = 1 − 2𝑛  𝑎𝑛𝑑 𝑥2(𝑛) = 2𝑛 

By using MATLAB Code, we get Figure 1 

 
    Figure1: Numerical Solution of the system of 

Differential Equations   

Remark 1: The analysis and solution of any k-th 

order difference problem can be simplified by 

transforming it into a set of difference equations of 

the first order. This approach reduces the complexity 

of higher-order problems, particularly for numerical 

methods, by decomposing them into multiple first-

order equations. 

Example 3: To determine the analytical solution to 

the third-order system, apply the discrete Putzer 

method.  
𝑥(𝑛 + 2) = 3𝑥(𝑛 + 2) − 3𝑥(𝑛 + 1) + 𝑥(𝑛)

𝑥(0) = 1 , 𝑥(1) = 0 , 𝑥(2) = 3
 

To solve this problem by writing the discrete system 

above as follows: 
𝑥(𝑛 + 1) = 𝑦(𝑛)

𝑦(𝑛 + 1) = 𝑧(𝑛)

𝑧(𝑛 + 1) = 3𝑧(𝑛) − 3𝑦(𝑛) + 𝑥(𝑛)
 

Therefore, the system of the first order linear 

difference equation as  

  𝑋(𝑛 + 1) = 𝐴𝑋(𝑛) 

Where 

                   𝑋(𝑛) = (𝑥(𝑛), 𝑦(𝑛), 𝑧(𝑛))
𝑇
 

𝐴 = (
0 1 0
0 0 1
1 −3 3

) 

The corresponding initial condition is, 

𝑋(0) = (𝑥(0), 𝑦(0), 𝑧(0))
𝑇

= (𝑥(0), 𝑦(1), 𝑧(2))
𝑇

= (1,0,3)𝑇 

To find the eigenvalue,  

|𝐴 − 𝜆𝐼| = |
−𝜆 1 0
0 −𝜆 1
1 −3 3 − 𝜆

|

= −𝜆[(𝜆 − 3) + 3] − 1(−1) = 

= −𝜆(𝜆2 − 3𝜆 − 3) + 1 = −(𝜆 − 1)3 = 0 

Therefore, eigenvalues are 𝜆1 = 𝜆2 = 𝜆3 = 1.  

Now, from the Putzer algorithm,  

𝐴𝑛 = ∑ 𝑢𝐽(𝑛)𝑀(𝐽−1)

3

𝐽=1

 

= 𝑀(0)𝑢1(𝑛) + 𝑀(1)𝑢2(𝑛) + 𝑀(2)𝑢3(𝑛) 

where,  𝑀(0) = 𝐼 = (
1 0 0
0 1 0
0 0 1

)  , 
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𝑀(1) = 𝐴 − 𝐼 = (
−1 1 0
0 −1 1
1 −3 2

) , 

𝑀(2) = (𝐴 − 𝐼)2 = (
−1 1 0
0 −1 1
1 −3 2

)(
−1 1 0
0 −1 1
1 −3 2

)

= (
1 −2 1
1 −2 1
1 −2 1

) 

𝑢1(𝑛) = 𝜆1
𝑛 = 1𝑛 = 1    

𝑢2(𝑛) = ∑ 𝜆2
𝑛−1−𝑖𝑢1(𝑖) = ∑ 1𝑛−1−𝑖 . 1

𝑛−1

𝑖=0

𝑛−1

𝑖=0

 

= ∑ 1

𝑛−1

𝑖=0

= 𝑛 

𝑢3(𝑛) = ∑ 𝜆3
𝑛−1−𝑖𝑢2(𝑖) = ∑ 1𝑛−1−𝑖 . 𝑖

𝑛−1

𝑖=0

𝑛−1

𝑖=0

 

= ∑ 𝑖

𝑛−1

𝑖=0

=
𝑛 (𝑛 − 1)

2
 

Therefore,     

𝐴𝑛 = 𝑀(0)𝑢1(𝑛) + 𝑀(1)𝑢2(𝑛) + 𝑀(2)𝑢3(𝑛) 

= 1(
1 0 0
0 1 0
0 0 1

) + 𝑛 (
−1 1 0
0 −1 1
1 −3 2

)

+
𝑛(𝑛 − 1)

2
(
1 −2 1
1 −2 1
1 −2 1

) 

Now, 𝑋(𝑛) = 𝐴𝑛𝑋(0)   

= [(
1 0 0
0 1 0
0 0 1

) + 𝑛 (
−1 1 0
0 −1 1
1 −3 2

)

+
𝑛(𝑛 − 1)

2
(
1 −2 1
1 −2 1
1 −2 1

)](
1
0
3
) 

𝑥(𝑛) = 1 − 𝑛 + 2𝑛(𝑛 − 1) = 1 − 𝑛 + 2𝑛2 − 2𝑛
= 1 − 3𝑛 + 2𝑛2 

𝑦(𝑛) = 0 + 3𝑛 + 2𝑛(𝑛 − 1) = 3𝑛 + 2𝑛2 − 2𝑛
= 𝑛 + 2𝑛2 

𝑧(𝑛) = 3 + 7𝑛 + 2𝑛(𝑛 − 1) = 3 + 7𝑛 + 2𝑛2 − 2𝑛
= 3 + 5𝑛 + 2𝑛2 

    It is easy to plot the numerical solution by using 

ode 45, we obtain Figure 2 

 
Figure 2: Numerical solution of the Third DEs 

 

Remark2: 

• The values for 𝑥(𝑛), 𝑥(𝑛 + 1), and 𝑥(𝑛 + 2) 

Every time step is printed. 

• The plot shows how these values evolve over 

the steps from 𝑛 = 0 to 𝑛 = 10. 

Non-Homogeneous systems of linear 

difference equations . 

Consider the non-homogeneous linear system 

𝑋(𝑛 + 1) = 𝐴𝑋(𝑛) + 𝑏(𝑛) 

Where 𝑋(𝑛) and 𝑏(𝑛) are 𝑘 × 1 column matrices and 

𝐴 is a 𝑘 × 𝑘. Then the analytical solution is given by  

𝑋(𝑛) = 𝐴𝑛𝑋(0) + ∑ 𝐴𝑛−𝑟−1𝑏(𝑟)

𝑛−1

𝑟=0

 

Where: 

   𝑋(0) is the initial state at 𝑛 = 0. The first term, 

𝐴𝑛𝑋(0), symbolises the remedy for the system's 

homogenous component. The second term, 

∑ 𝐴𝑛−𝑟−1𝑏(𝑟)𝑛−1
𝑟=0 , accounts for the contribution of the 

non-homogeneous part. 

    The solution comprises two components: the 

homogeneous solution and the non-homogeneous 

solution. The term 𝐴𝑛𝑋(0) describes the system's 

evolution from the initial condition 𝑋(0) over 𝑛 steps, 

governed by the matrix 𝐴. Meanwhile, the summation 

term accounts for the non-homogeneous influences at 

each time step, incorporating the cumulative effect of 

the forcing function 𝑏(𝑛) across previous time steps. 

Example 4: Use the discrete Putzer algorithm to find 

the analytical solution to the system  

𝑋(𝑛 + 1) = (
2 2

−2 6
)𝑋(𝑛) + (

𝑒−𝑛

0
) , 𝑥(0) = (

1
7
) 

Solution:-           

Let              

𝐴 = (
2 2

−2 6
) ⟹ |𝐴 − 𝜆𝐼| = 0 

⟹ (𝜆 − 2)(𝜆 − 6) + 4 

= 𝜆2 − 8𝜆 + 12 + 4 

= 𝜆2 − 8𝜆 + 16 = (𝜆 − 4)2 = 0 

Therefore, the eigenvalue of 𝐴 are 𝜆1 = 4 = 𝜆2. 

Now, from the Putzer algorithm.  

𝐴𝑛 = ∑𝑢𝐽(𝑛)𝑀(𝐽 − 1)

2

𝐽=1

= 𝑢1(𝑛)𝑀(0) + 𝑢2(𝑛)𝑀(1) 

Where  

𝑀(0) = (
1 0
0 1

) ,𝑀(1) = 𝐴 − 4𝐼 = (
−2 2
−2 2

) , 

𝑢1(𝑛) = 𝜆1
𝑛 = 4𝑛 , 

𝑢2(𝑛) = ∑ 𝜆2
𝑛−1−𝑖𝑢1(𝑖) = ∑ 42

𝑛−1−𝑖4𝑖

𝑛−1

𝑖=0

𝑛−1

𝑖=0

 

= ∑ 4𝑛−1 = 𝑛4𝑛−1

𝑛−1

𝑖=0

 

∴  𝐴𝑛 = 𝑢1(𝑛)𝑀(0) + 𝑢2(𝑛)𝑀(1) 

= 4𝑛 (
1 0
0 1

) + 𝑛4𝑛−1 (
−2 2
−2 2

) 

𝐴𝑛 = (4
𝑛 − 2𝑛4𝑛−1 2𝑛4𝑛−1

−2𝑛4𝑛−1 4𝑛 + 2𝑛4𝑛−1) 
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Hence, the analytical solution is given by  

∑ (
4𝑛−𝑟−1 − 2(𝑛 − 𝑟 − 1)4𝑛−𝑟−2 2(𝑛 − 𝑟 − 1)4𝑛−𝑟−2

−2(𝑛 − 𝑟 − 1)4𝑛−𝑟−2 4𝑛−𝑟−1 + 2(𝑛 − 𝑟 − 1)
)

𝑛−1

𝑟=0

 

= (
4𝑛 − 2𝑛4𝑛−1 + 7(2𝑛4𝑛−1)

−2𝑛4𝑛−1 + 7(4𝑛 + 2𝑛)𝑛−1)

+ ∑ 𝑒−𝑟 (
4𝑛−𝑟−1 − 2(𝑛 − 𝑟 − 1)4𝑛−𝑟−2

−2(𝑛 − 𝑟 − 1)4𝑛−𝑟−2 ) =

𝑛−1

𝑟=0

 

= (
4𝑛 + 12𝑛4𝑛−1

7(4𝑛) + 12𝑛4𝑛−1)

+ ∑ 𝑒−𝑟 (
4𝑛−𝑟−1 − 2(𝑛 − 𝑟 − 1)4𝑛−𝑟−2

−2(𝑛 − 𝑟 − 1)4𝑛−𝑟−2 )

𝑛−1

𝑟=0

 

By using numerical solution, we obtain Figure 4 

 
Figure 4: Solution of the Non-Homogeneous Linear 

System 

Initial value problems for linear systems 

Consider value problems for linear form  
𝑢1(𝑡 + 1) = 𝑎11(𝑡)𝑢1(𝑡) + ⋯+ 𝑎1𝑛(𝑡)𝑢𝑛(𝑡) + 𝑓1(𝑡)

𝑢2(𝑡 + 1) = 𝑎21(𝑡)𝑢1(𝑡) + ⋯+ 𝑎2𝑛(𝑡)𝑢𝑛(𝑡) + 𝑓2(𝑡)
⋮                          ⋮                                        ⋮                   ⋮

𝑢𝑛(𝑡 + 1) = 𝑎𝑛1(𝑡)𝑢1(𝑡) + ⋯ + 𝑎𝑛𝑛(𝑡)𝑢𝑛(𝑡) + 𝑓𝑛(𝑡)

 

For, 𝑡 = 𝑎, 𝑎 + 1, 𝑎 + 2,⋯. This system can be 

written as an equivalent vector equation,  

𝑢(𝑡 + 1) = 𝐴(𝑡)𝑢(𝑡) + 𝑓(𝑡)                            (8) 

Where  

𝑢(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)
⋮

𝑢𝑛(𝑡)

],  

𝐴(𝑡) = [

𝑎11(𝑡) ⋯ 𝑎1𝑛(𝑡)

𝑎21(𝑡) ⋯ 𝑎21(𝑡)
⋮ ⋮ ⋮

𝑎𝑛1(𝑡) ⋯ 𝑎𝑛𝑛(𝑡)

]

𝑛×𝑛

,   

 𝑓(𝑡) = [

𝑓1(𝑡)
𝑓2(𝑡)

⋮
𝑓𝑛(𝑡)

] 

The study of equation (8) includes the 𝑛𝑡ℎ order 

scalar equation  

𝑃𝑛(𝑡)𝑦(𝑡 + 𝑛) + ⋯+ 𝑃0(𝑡)𝑦(𝑡) = 𝑟(𝑡)        (9) 

As special case. To see this, let 𝑦(𝑡) solve equation 
(9) and define  

𝑢𝑖(𝑡) = 𝑦(𝑡 + 𝑖 − 1)   for    1 ≤ 𝑖 ≤ 𝑛 , 𝑡 = 𝑎, 𝑎 +
1,⋯ 

Then the vector function 𝑢(𝑡) with components 𝑢𝑖(𝑡) 

satisfies equation (8) if 

𝐴(𝑡) =

[
 
 
 
 
 

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 1

−𝑃0(𝑡)

𝑃𝑛(𝑡)

−𝑃1(𝑡)

𝑃𝑛(𝑡)

−𝑃2(𝑡)

𝑃𝑛(𝑡)
⋯

−𝑃𝑛−1(𝑡)

𝑃𝑛(𝑡) ]
 
 
 
 
 

  

, 𝑓(𝑡) =

[
 
 
 
 
 

0
0
0
⋮

𝑟(𝑡)

𝑃𝑛(𝑡)]
 
 
 
 
 

      (10) 

The matrix 𝐴(𝑡) in equation (10) is" called the 

companion matrix" of equation (9). From (9) 

𝑦(𝑡 + 𝑛) =
𝑟(𝑡)

𝑃𝑛(𝑡)
−

−𝑃𝑛−1(𝑡)

𝑃𝑛(𝑡)
𝑦(𝑡 + 𝑛 − 1)

−
−𝑃𝑛−2(𝑡)

𝑃𝑛(𝑡)
𝑦(𝑡 + 𝑛

− 2)⋯
−𝑃0(𝑡)

𝑃𝑛(𝑡)
𝑦(𝑡) 

Since,                                        

𝑢1(𝑡 + 1) = 𝑦(𝑡 + 1)  

𝑢2(𝑡 + 1) = 𝑦(𝑡 + 2)

𝑢3(𝑡 + 1) = 𝑦(𝑡 + 3)
⋮

𝑦𝑛(𝑡 + 1) = 𝑦(𝑡 + 𝑛)

 

But  
𝑢1(𝑡) = 𝑦(𝑡)  

𝑢2(𝑡) = 𝑦(𝑡 + 1)

𝑢3(𝑡) = 𝑦(𝑡 + 2)
⋮

𝑦𝑛(𝑡) = 𝑦(𝑡 + 𝑛 − 1)

 

⟹ 𝑢1(𝑡 + 1) = 𝑢2(𝑡)  , 𝑢2(𝑡 + 1)
= 𝑢3(𝑡) ⋯ ⋯𝑢𝑛−1(𝑡 + 1)
= 𝑢𝑛(𝑡)   

⟹ 𝑢𝑛(𝑡) = −
𝑃0(𝑡)

𝑃𝑛(𝑡)
𝑢1(t) −

𝑃1(𝑡)

𝑃𝑛(𝑡)
𝑢2(t) ⋯ ⋯

−
𝑃𝑛−1(𝑡)

𝑃𝑛(𝑡)
𝑢𝑛(t) +

𝑟(𝑡)

𝑃𝑛(𝑡)
 

 Conversely, if 𝑢(𝑡) solves equation (8) with 𝐴(𝑡) 

and 𝑓(𝑡) given in equation (10), then 𝑦(𝑡) = 𝑢1(𝑡)  
is a solution of equation (9). 

Theorem 3: [3] For each 𝑡0 in {𝑎, 𝑎 + 1,⋯ } and each 

𝑛 − 𝑣𝑒𝑐𝑡𝑜𝑟 𝑢0. Equation (8) has a unique solution 

𝑢(𝑡) defined for 𝑡 = 𝑡0, 𝑡0 + 1,⋯, so that 𝑢(𝑡0) = 𝑢0. 

Now assume that 𝐴 is independent of 𝑡 (i,e, all 

coefficients in the system are constants) and 𝑓(𝑡) = 0 

. Then the equation (8) reduces to  

𝑢(𝑡 + 1) = 𝐴𝑢(𝑡)               (11) 

Then the solution 𝑢(𝑡) of equation (11) satisfying the 

initial condition 

𝑢(0) = 𝑢0 , 𝑖𝑠 𝑢(𝑡) = 𝐴𝑡𝑢0(𝑡 = 0,1,2,⋯ ). 

Hence the solutions of equation (11) can be found by 

calculating powers of 𝐴. 

Example 5: Population of American bison 

Let 𝑢1(𝑡), 𝑢2(𝑡) and 𝑢3(𝑡) represent the number of 

calves, yearlings, and adults, respectively, after t 
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years, and represent the American bison population 

vector.  

Let's say that the number of infants is 42 percent of 

the number of adults from the year before. Assume 

additionally that 75% of yearlings grow into adults, 

95% of adults survive to live the next year, and 60% 

of calves live to become yearlings each year. The 

linear system is therefore satisfied by the population 

vector 𝑢(𝑡).  
𝑢1(𝑡 + 1) = 0.42𝑢3(𝑡)

𝑢2(𝑡 + 1) = 0.60𝑢1(𝑡)

𝑢3(𝑡 + 1) = 0.75𝑢2(𝑡) + 0.95𝑢3(𝑡)

 

(i,e) 𝑢(𝑡 + 1) = 𝐴𝑢(𝑡), where        

𝐴 = [
0 0 0.42

0.60 0 0
0 0.75 0.95

]

3×3

 , 𝑢(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)

𝑢3(𝑡)
]. 

To solve this problem by using also ode 45, we get 

the following figure. 

 
Figure 5: Population Dynamics of American Bison 

Graphs showing the changes in the populations of 

calves, yearlings, and adults over the years.

 

Conclusion 

We have demonstrated the effectiveness of analytical 

and computational approaches, such as matrix-based 

solutions and the Putzer Algorithm, in solving both 

homogeneous and non-homogeneous systems. The 

use of matrix exponentiation provides an efficient 

method for solving linear homogeneous problems, 

while non-homogeneous solutions are obtained as the 

sum of the homogeneous response and a specific 

solution derived through iterative summations. These 

techniques have practical applications in fields such 

as population dynamics and robotic motion analysis. 
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